

The University of Jordan Accreditation & Quality Assurance Center

Course Syllabus

Course Name: Dynamical Systems

1	Course title	Dynamical Systems
2	Course number	0301905
3	Credit hours (theory, practical)	3
3	Contact hours (theory, practical)	3
4	Prerequisites/requisites	none
5	Program title	Ph.D. in Mathematics
6	Program code	
7	Awarding institution	The University of Jordan
8	Faculty	Science
9	Department	Mathematics
10	Level of course	Elective specialization requirement
11	Year of study and semester (s)	2 nd year
12	Final Qualification	Ph.D. in Mathematics
13	Other department (s) involved in teaching the course	None
14	Language of Instruction	English
15	Date of production/revision	13/10/2020

16. Course Coordinator:

Name: Dr. Ahmed Y. Abdallah

Office number:22109

Phone number: 0797911509

Email:

farah@ju.edu.jo

17. Other instructors:

None			

18. Course Description:

Fundamental concepts, extensive survey of examples, equivalence and classification of dynamical systems, principal classes of asymptotic invariants, circle maps, chaos

19. Course aims and outcomes:

A- Aims:

- 1- To Discuss several elementary fundamental examples which are related to dynamical systems.
- 2- To encounter a number of useful concepts related to the asymptotic behavior of dynamical systems.
- 3- To introduce natural equivalence relations between dynamical systems associated with various classes of coordinate changes.
- 4- To interpret the problem of description of the orbit structure as the classification of dynamical systems with respect to equivalence relations.
- 5- To study principal classes of asymptotic topological invariants.
- 6- To investigate the asymptotic distribution and statistical behavior of orbits.

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able

A. Knowledge and Understanding Skills: Student is expected to

- A1) Understand the given fundemental examples.
- A2) know the basic concepts related to the asymptotic behavior of dynamical systems.

B. Intellectual Analytical and Cognitive Skills: Student is expected to

- B1) Analyze the asymptotic behavior for some dynamical systems.
- B2) Descripe the orbit structure as the classification of dynamical system with repect to equivalence relations.

C. Subject- Specific Skills: Student is expected to

- C1) Solve some problems related to the given examples.
- C2) Discuss the principal classes of asymptotic topological invariants
- C3) Interpret the asymptotic distribution and statistical behavior of orbits.

D. Creativity /Transferable Key Skills/Evaluation: Student is expected to

- D1) Be involved in the process of illustrating concepts, building models and exploring facts.
- D2) Make critical comments on obtained results.
- D3) Write reports, to be involved in general discussions with his class mates, and to do independent work.

20. Topic Outline and Schedule:

m :	YA7 3	T .	A 7 : 7	Evaluation	D.C
Topic	Week	Instructor	Achieved ILOs	Methods	Reference
Introduction:	1		1		1
1. Principal branches of					
dynamics.					
2. Flows, vector fields,					
differential equations.					
3. Time-one map, section,					
suspension.					
4. Linearization and localization					
First Examples:	2-4		2	Homework1	1
1. Maps with stable asymptotic behavior.					
2. Linear maps.					
3. Rotations of circles.					
4. Translations on the torus.					
5. Linear flow on the torus and					
completely integrable systems. 6. Gradient flows.					
7. Expanding maps.					
8. Hyperbolic toral automorphisms.					
9. Symbolic dynamical systems.					
Equivalence, Classification, and Invariants:	5-8		3	Mid Exam	1
1. Smooth conjugacy and moduli of maps					
2. Smooth conjugacy and time change for					
flows.					
3. Topological conjugacy, factors, and structural stability.					
4. Topological classification of expanding					
maps on a circle. 5. Coding, horseshoes, and Markov					
partitions.					
6. Stability of hyperbolic toral					
automorphisms.					
7. The fast-converging iteration method					
for the conjugacy problem.					
8. The Poincare-Siegel Theorem.					
9. Cocycles and cohomological equations.	9-11		3	Home Morely 2	1
Principal Classes of Asymptotic Topological Invariants:	9-11		3	HomeWork 2	1
1. Growth of orbits.					
2. Examples of calculation of topological					
entropy.					
3. Recurrence properties.					
Statistical Behavior of Orbits and	12-15		4	Final Exam	1
Inroduction to Ergodic Theory:					
Aysmptotic distribution and statistical behavior of					
and statistical behavior of orbits.					
2. Examples of ergodicity.					
3. Measure-theoretic entropy.					
4. Examples of calculation of					
measure-theoretic entropy.					
5. The variational principle.					

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following <u>teaching and learning methods</u> :
In order to succeed in this course, each student each student need to be an active participant in learning-
both in class and out of class.

- Class time will be spent on lecture as well as discussion of homework problems and some group work
- To actively participate in class, you need to prepare by reading the textbook and doing all assigned homework before class.
- You should be prepared to discuss your homework.
- You are encouraged to work together with other students and to ask questions and seek help from the professor, both in and out of class

22. Evaluation Methods and Course Requirements:

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment methods and requirements</u>:

ILO/s	Learning Methods	Evolution Methods	Related ILO/s to the program
	Lectures	Exam	
	Published Papers	Presentation	
		Home work	

23. Course Policies:

Class attendance of students at the beginning of the lecture is recoded.
Assignment is given to the students at regular intervals for them to solve and submit.
Late or no submission of assignments carries penalties or loss of grade points.
Absences recorded in each lecture with making excuses, if any.

24. Required equipment:					

25	D -	C			_
25.	Ke	rer	en	ce	S:

A- Required book (s), assigned reading and audio-visuals:					
1. Introduction to the Modern Theory of Dynamical Systems, A. Katok & B. Hasselblatt.					
B- Recommended books, materials, and media:					
 Differential Equations, Dynamical systems, and an Introduction to Chaos, M. W. Hirsch, S. Smale, and R. L. Devaney. Chaos: An Introduction to Dynamical Systems, K. T. Alligood, T. D. Sauer, and J. A. Yorke. 					
26. Additional information:					
Name of Course Coordinator: Dr. Ahmed Y. Abdallah	Signature:				
Date:					
Head of curriculum committee/Department:	Signature:				
Head of Department:	Signature:				
Head of curriculum committee/Faculty:	Signature:				
Dean:	Signature:				

Copy to: Head of Department Assistant Dean for Quality Assurance Course File